Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


EDMmodelServerManager
Area Calculator,
Version 2.0








Opphavsrett
Denne programvaren inneholder opphavsrettsbeskyttet materiale, forretningshemmeligheter samt annet beskyttet materiale. Du skal ikke, og skal ikke forsøke å, modifisere, reversere, dekompilere Programvaren. Du kan heller ikke lage avledede verk eller andre arbeider som er basert på eller avledet fra Programvaren, helt eller delvis.
Jotne EPM Technology AS navn, logo og grafikkfil som representerer Programvaren skal ikke brukes på noen måte å markedsføre produkter utviklet med programvaren uten Jotne EPM Technologys godkjennelse. Jotne EPM Technology AS beholder den eneste og eksklusive eierskap til alle rettigheter, tittel og interesser i og for Programvaren og alle immaterielle rettigheter knyttet til dette.
Copyright lov og internasjonale opphavsrettstraktatbestemmelser beskytter alle deler av programvaren, produkter og tjenester. Ingen program, kode, del, bilde, eller tekst kan kopieres eller brukes på noen måte av brukeren unntatt som forutsatt innenfor rammene av programvarens naturlige bruk. Alle rettigheter som ikke uttrykkelig er gitt, er forbeholdt for Jotne EPM Technology AS.
Ansvarsfraskrivelse
Denne programvaren og tilhørende dokumentasjon leveres som den er og det gis ingen garantier for dens egnethet for et spesielt formål. Ikke under noen omstendigheter skal Jotne stilles ansvarlig for direkte eller indirekte tap eller skader, (inkludert men ikke begrenset til tap av data, tap av fortjeneste eller produksjonsstans), uansett årsak og ansvarsteori, verken som følge av bruken av denne programvaren eller av de data den produserer.

Anchor
_GoBack
_GoBack

Anchor
TOC
TOC
Anchor
_Toc399828838
_Toc399828838
Anchor
_Toc400627761
_Toc400627761
Innhold
1 General
1.1 Abbreviations
1.2 External references
1.3 EDMmodelServer referances
2 Using the Area Calculator
2.1 Preconditions
2.2 How AC works
2.3 Storing AC results
2.4 Running Area Calculator
2.5 Handling of error situations while calculating areas
2.5.1 Overlapping IfcSpaces
2.5.2 Areas not covered by space or building element
2.6 Virtual Spaces
3 Rules for calculation
3.1 Walls
3.2 BTA for building storey
3.3 Openings
3.4 Inclined (pitched) ceilings
3.5 Columns and other "inner" elements in a space
3.6 Staircases and similar
3.6.1 Finding stair footprints
3.6.2 Area of stair itself
3.7 Stairs with irregular cut lines
3.7.1 Footprints of spiral / curved stair
3.7.2 Free form stair
3.8 Staircases and openings
3.8.1 Staircase spanning multiple storeys in an opening
3.8.2 Staircase spanning multiple storeys with floor under stair
3.8.3 Spiral staircase spanning multiple storeys
3.9 Some additional considerations

...

Room (IfcSpace)

  • All rooms (spaces) must have a name
  • All rooms (spaces) must have proper qualification ("Nomenklaturet")
  • All rooms (spaces) must have a geometry that corresponds to the space NTA

Etasje (IfcBuildingStorey)

  • A «virtual» space defining the outside of the external walls with name «{*}BTAEtasje{*}» should be supplied, example: «B0130 BTAEtasje 01».
Slabs (IfcSlab)
  • All slabs (IfcSlab) must be directly connected to storeys (IfcBuildingStorey) in the IFC tree structure

Anchor
_Toc439002992
_Toc439002992
Anchor
_Toc439003540
_Toc439003540
How AC works

...

Anchor
_Toc439003008
_Toc439003008
Anchor
_Toc439003556
_Toc439003556
Stairs with irregular cut lines

Innhold
It is not as trivial as it sounds to identify "area below 1.90" under a stair. An important concept here is the "cut line" which is the common line between projected area (footprint) below 1.90 and projected area (footprint) above 1.90. For the simplest case this is a straight line. However, if the stair geometry is more complex the cut line will also be more complex. The reason for this could be as simple as a stir built as two beams bearing the foundation for the steps:
For the simplest case this is a straight line. However, if the stair geometry is more complex the cut line will also be more complex:

Figur 5 - Approximating the cut line
This approximation will probably only work if railings, fences etc is not taken into account. Until further notice, it is believed to be possible to filter these out by type.
If the stair includes railings and/or it is an open stair, the footprint becomes more complex:

Figur 6 - open stair with railings
The footprint of stair below 1.90 is lower left in figure. In this case it even contains "holes"; if these introduce problems it should be possibly to apply an algorithm to remove holes. Imposing the footprint for entire stair introduces several possibilities for points C1 and C2 and start/(en d of "cut line":

Figur 7 - footprints for symmetrical stair
As long as at least one of the C points can be found the previous algorithm should work. To ensure symmetry we can run algorithm twice, in CW and CCW directions, and pick first point found in both cases.
If it turns out to be problematic finding C points, we could apply an algorithm for making polygon convex on the stair-below-90 footprint:

Figure 8 Apply convex footprint enclosing line
If the stair is "asymmetric" around its midpoint line, for example included railings but on only one side, the approach will not work the same way:

Figure 9 Asymmetrical case
The line between identified points C1-1 and C2-1 are no longer a proper "cut line". TODO: Currently, a simple solution for this case is not identified. We must rely on stairs not including railings, or being symmetrical, and use C1C2 as cut line.
To enable polygon edit, and simplify the further calculation (60-cm rule), we should always perform this "cut line approximation" step.
When the "cut line" is approximated as a straight line the "60 cm rule" is rather easy to implement:

Figur 12 - Adding 60cm compensation
An acceptable and simple approximation is to create a rectangle with the cut line E1E2 as one of the sides, a parallel F1F1 as opposite side, the two other sides being 60cm in length.
There is one exception, for small curved/spiral staircases, where the compensation polygon will be a triangle version of the above: E1E2F1.

...